Hands-on Space Experiments: Out-of-School Astrobiology Activities at the University of Rome Tor Vergata

Daniela Billi1, Alessandro Berlingeri2, Amedeo Balbi1 and Liu M Catena3

1Department of Biology, University of Rome Tor Vergata, Rome, Italy
2Department of Physics, University of Rome Tor Vergata, Rome, Italy
3Center for Research and Continuing Education for the Teaching Scientific Disciplines, University of Rome Tor Vergata, Rome, Italy

Abstract

In the 2014 edition of “Stage a Tor Vergata”, an astrobiology module was proposed as a “hands-on” approach to lead motivated and talented high-school students through cutting-edge experiments aimed at testing the limits of terrestrial life outside Earth, the identification of biosignatures for searching life on Mars and the search for planetary systems around other stars. This “hands-on” approach introduced the students to laboratory procedures used to investigate the effects on cyanobacteria of space vacuum and UV radiation as expected in the EXPOSE-R2 mission outside the International Space Station. Students became familiar with techniques used to detect exoplanets and software applications that simulated the output of real observations. Data gathered by comparing pre- and post-internship learning tests showed a gain in the student’s perceived knowledge of astrobiology, while the analysis of the evaluation questionnaire revealed a positive effect. This internship and its future iterations are expected to increase the number of students enrolling in scientific degrees and, possibly, that of students choosing to dedicate their career to astrobiology.

Keywords: Astrobiology; Out-of-school activities

Introduction

There is no doubt that due to its focus on the origin and distribution of life in the Universe, astrobiology is a fascinating field for scientists but also for the general public. It is also unique in the way it fosters and relies on multidisciplinary: in this field, geologists collaborate with planetary physicists, biologists talk to astrophysicists and chemists examine satellite data from other planets. In view of its multidisciplinary nature and appeal, astrobiology has the potential to engage students with science by making them witnesses of cutting-edge space research. Out-of-school astrobiology programs have consequently been shown to improve students’ understanding of the nature and processes of science and to raise their interest in a career in science. Examples are given by programs such as “Pathways to Space” at the Powerhouse Museum (Sydney), “Mission to Mars” at the Victorian Space Science Education Centre (Melbourne) [1] and “Astrobiology in Secondary Classrooms” (ASC), a program carried out over three years in eight U.S. locations [2]. Faculty members of the University of Rome Tor Vergata began working in 2004 on out-of-school programs for undergraduate students attending nearby schools, in the frame of an educational project known as Piano Lauree Scientifiche (PLS, National Plan for Scientific Degrees), supported by the Italian Ministry of Instruction, University and Research. The PLS rationale stems from the awareness that in recent decades it has been detected in Italy a decrease in enrolment in basic sciences [3,4]. The PLS strategy is based on making the University's laboratories and research staff available to students, so as to give the latter a practical scientific experience and make them more disposed to study scientific disciplines at school, and perhaps pursue further scientific studies at the University (http://www.progetto Laureescientifiche.eu). Starting from fall 2011/12, an initiation to astrobiology concepts has been included in the PLS’s activities at the University of Rome Tor Vergata. This not only because astrobiology touches an emotive part of our intellect and awakens our need for exploration, but also because, as this field is rapidly evolving, it is important to develop an up-to-date educational infrastructure for the next generation of astrobiologists [5]. In the PLS-Laboratory of Astrobiology, the participation of high-school students has a voluntary basis, although their performance at school is also taken into account. The key topic of the activity is the search for life around other stars, focusing on our understanding of the nature and distribution of habitable planets beyond the Solar System and characterization of the observable ones. In addition, a focus on the potential of life to adapt to extreme conditions on Earth is proposed as a scientific prerequisite for the search of life beyond Earth. The program of the PLS-Laboratory of Astrobiology includes two lectures given at schools by the Faculty referent and four experiences at the University’s laboratories. After the 2012 edition, the students presented a poster on the effects of space radiation on extremophiles at a Workshop held in Rome (6; www.scienceperception.it/). Whereas a few volunteers among the 25 students who attended the 2013 edition will give a talk on “Extremophiles in Space” during the European Researchers’ Night 2014, which will be held in Frascati (www.frascatiscienza.it/). Building up on results of the PLS-Laboratory of Astrobiology, which appeared to raise the interest of students in science [7], an Astrobiology module was added to the 2010 edition of Stage a Tor Vergata (“Internship at Tor Vergata”; www.stageatorvergata.it/). This internship is an educational project, linked to the PLS, open to fifty students selected from various Italian schools who enter the University’s laboratories for one-week, twice a year [8]. The key topic of this first Astrobiology module was the search for life around other stars and the students presented the attended activity during an event organized by the University for ten nearby schools. In the 2014 edition of the Stage a Tor Vergata the Astrobiology module was proposed as a “hands-on” approach by taking advantage of the involvement of the University Tor Vergata in two...
experiments to be carried out on the International Space Station (ISS). The working hypothesis was that exposing pupils to laboratory practice in astrobiology cutting-edge experiments would be a strong motivator for the study of science and would raise their interest in astrobiology.

The proposed experiments are part of two proposals selected by the European Space Agency (ESA) for the next EXPOSE-R2 mission: Biofilm Organisms Surfing Space (BOSS) and BIOlogy and Mars Experiment (BIOMEX). Within these projects, selected organisms will be exposed to space conditions (and Martian simulated conditions in space) aboard the ESA’s EXPOSE-R2 facility [9] launched on the 23rd of July 2014, and after positioned outside the ISS during an extravehicular activity performed by astronauts. These experiments aim at addressing fundamental astrobiology questions dealing with the limits of life as we know it and with the identification of bio signatures for searching life on Mars [10-12]. In order to put the biological aspects in the proper astrophysical context and to let the students discover the interdisciplinary aspects of research in astrobiology, a full day of the internship was devoted to the concept of habitability and to the search for planets around other stars. The aim was to familiarize the students with techniques used to detect exoplanets and with software applications that simulated the output of real observations.

Methodology

In the 2014 edition of “Stage a Tor Vergata”, 50 students (17 to 18 years old) from schools located in Northern and Central Italy were selected by their science teachers on the basis their performance at school, curiosity and motivation. The involved schools were those which previously took part in PLS’s out-of school activities at the University of Rome Tor Vergata. The selected students were asked to choose one module among “Astronomical Techniques for Solar Physics”, “Optic Dispositive for Information and Communication Technology”, “Astrobiology”, “Forensic Anthropology” or “Communication and Science Outreach”. Each module offered a one-week internship, twice during the year, so that each student experiences 10 days at the University. Nine students (4 female and 5 male) attended the “Astrobiology” module. Each one-week internship consisted of 6 hours of introductory courses (in the morning) aimed at giving the background needed for the “hands-on” approach and of 15 hours in the laboratory (in the afternoon). Three days were devoted to laboratory procedures to investigate the subcellular effects of space vacuum and ultraviolet radiation on cyanobacteria previously exposed to simulated space and Martian conditions at the DLR (Cologne) in preparation of the EXPOSE-R2 mission. Another day was dedicated to techniques used in recent years to detect exoplanets, by letting the students use software applications that simulated the output of real observations (e.g., those from the Kepler space telescope). On the last day, during a round table the students prepared a presentation on the astrobiology activities; the presentation was given during a public event organized by the University at the end of the week.

At the end of one-week internship, students were asked to evaluate the program by indicating whether their curricula benefited from the integration of different scientific competences and whether they were satisfied with the experience. The results were further evaluated by comparing pre- and post-internship learning tests made of 30 multiple-choice questions with 3 possible answers.

Results

The program allowed the students to dream and expand their collective scientific knowledge at the same time, doing “basic” biology and astrophysics experiments, and was therefore successful in captivating their minds and raising their interest in science and astrobiology. Thanks to the “hands-on” approach, students experienced various molecular biology tools often described in school science textbooks, here applied to investigate the physical-chemical limits of life as we know it, and familiarized with techniques used in recent years to detect exoplanets. Students extracted genomic DNA and looked for DNA damage by using a PCR-based method, using a desert strain of a cyanobacterium previously exposed to ground-based space simulations in the frame of the EXPOSE-R2. The students’ perception of the cellular structures was refined through 3-D imaging of cyanobacteria with a confocal laser scanning microscope. In addition, students familiarized with basic analysis techniques and capabilities to find candidate exoplanets from their signatures in stellar light curves and spectra. Each student worked on one planet (GJ667Cc, Kepler- 62e, Kepler-283c, Kepler-296f, GJ667Cf, GJ 163c, HD 40307g, Kepler-61b or Kepler-186f) and assessed its potential habitability by comparing the physical features with those tolerated by terrestrial extremophiles. Besides gaining scientific knowledge on the EXPOSE-R2 and KEPLER space missions, the students properly identified associated astrobiology tasks that might be of public interest, such as understanding the limit of life, searching for life beyond Earth and identifying our planet’s twin (not shown).

The analysis of the pre-and post-internship learning tests pointed out that each student scored better after the internship at questions dealing with theoretical aspects and scientific and technological applications addressed during the astrobiology module (Figure 1), bringing the average of correct answers from 59.33% to 78.66%.

Figure 1: Pre- and post-internship learning tests made of 30 multiple-choice questions with 3 possible answers given by the students attending the astrobiology module of the Stage a Tor Vergata.
The analysis by gender revealed that, on average, male students got higher scores than females in the post-internship learning test. The proposed activities had a positive impact on all students, as revealed by the evaluation questionnaire (Table 1); no negative feedback was given when the students were asked about the utility of the proposed activities in the context of their contact with the academic world. There was no difference between the fraction of students agreeing with the statement "I would like to become an astrobiologist" before and after the internship (in each case, 3 out of 9).

Discussion

The main goal of the reported “hands-on” project of the astrobiology module of the 2014 edition of Stage a Tor Vergata was to get students involved in space-related astrobiology experiments in order to expand the next generation of astrobiologists and, at the same time, to make them more prone to studying scientific disciplines at school, and perhaps pursue further scientific studies at the University. The strategy was to involve them in astrobiological research aimed at addressing the question related to whether there is life beyond Earth. The approach was to make them consider that our understanding of life on exoplanets must be based on what we know about life on Earth and on the extremes it can tolerate. Hence, in the “hands-on” project the students investigated the endurance of an extreme-tolerant cyanobacterium, selected for the EXPOSE-R2 space Testo mission, under ground-based simulations of space and Martian conditions. In addition, they familiarized with methods used by the astronomers to find exoplanets, focusing the transit method used by the Kepler space telescope, and to assess their habitability.

In the organizers’ opinion, the students adapted well to a scientific level of complexity that was far from that they experience at school. At the same time they increased their capability to reason scientifically about astrobiology and achieve an open, non-compartmentalized vision of science. This was pointed out during a public event organized by the University at the end of the stage, when they appeared confident in presenting the activities they were involved to students from nearby schools.

Finally, thanks to this experience, the students were confronted to profound philosophical questions raised by the field of astrobiology, such as those about our place in the Universe and the possibility of life beyond Earth, by using “simple” evidence given by the endurance of life as gathered from desert cyanobacteria thriving in Mars analogues on Earth [13]. In conclusion, the out-of-school astrobiology activities conducted in the last few years at the University of Rome Tor Vergata and those planned to be performed in the coming years will contribute to increase the number of motivated and talented students enrolling in scientific degrees and, hopefully, to increase the ranks of the Italian astrobiologists’ next generation.

Acknowledgment

Authors are grateful to the Italian Ministry of Instruction, University and Research for funding the Stage a Tor Vergata and to the Italian Space Agency for supporting the BOSS_Cyano and BIOMEX_Cyano projects. Thanks are due to Mickaël Baqué and Cyprien Verseux for their valuable help, and to the students: Lorento C. Luca L, Leonardo G, Beatrice M, Beatrice N, Riccardo C, Francesco P, Veronica R and Anna S, for attending with enthusiasm the 2014 edition of the Astrobiology module. Thanks are also due to the students who attended the PLS-Laboratory of Astrobiology.

References

